
swspy
Release 1.0.4

Tom S Hudson

Sep 11, 2023

CONTENTS:

1 Installation 3
1.1 Dependencies . 3
1.2 Installing . 3

2 Coordinate System 5

3 Tutorials 7
3.1 Example of single source-receiver measurement for ScS arrival, manually specifying input paramters 7
3.2 Single earthquake example (for multiple receiver observations) . 9
3.3 Example of how to run automated multi-event manager . 12
3.4 Example using SAC data . 14

4 Tips for HPC users 17

5 swspy 19
5.1 swspy package . 19

6 Contributing 31

7 Indices and tables 33

Python Module Index 35

Index 37

i

ii

swspy, Release 1.0.4

SWSPy is a python package for performing shear wave splitting in an automated manner. Based on the eigenvalue
method of Silver and Chan (1991), with multi-windowing of Teanby et al (2004), coordinate system transformations
from Walsh et al (2013), automation methods based on Wustefeld et al (2010), support for multi-layered anisotropic
media and some other additions.

CONTENTS: 1

swspy, Release 1.0.4

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

swspy can currently be installed via PyPi (pip install swspy) or a manual install. For the most stable version, select
PyPi, for the most up to date versionm select a manual install.

1.1 Dependencies

The package has the following dependencies:

numpy scipy pandas matplotlib scikit-learn obspy numba (And for testing: pytest nbformat nbconvert ipykernel)

1.2 Installing

1.2.1 Manual install from source

Download or clone the package from , and install by:

python setup.py install

1.2.2 pip install

To install via PyPi you can use the following command to install the package:

pip install swspy

1.2.3 conda install

We hope to soon support installation via conda.

3

swspy, Release 1.0.4

4 Chapter 1. Installation

CHAPTER

TWO

COORDINATE SYSTEM

It is important to understand the coordinate system used by swspy, given that swspy can measure ansiotropy in 3D, as
opposed to most previous shear-wave splitting codes.

There are two options that one can use for coordinate system: 1. ZNE - In this coordinate system, the package assumes
that the ray is coming in at vertical incidence, therefore measuring fst-direction in the horizontal plane. This is conven-
tionally how most previous codes have performed shear-wave splitting analysis. 2. LQT - In this coordinate system,
the package works in the emerging coordinate system, i.e. in 3D. In this system, the fast direction is described by two
angles, phi_1 and phi_2.

Below is a figure summarising the coordinate system. In both the above cases, the problem is solved in the QT plane
then translated to the correct coordinate system for the outputs. For the ZNE coordinate system option, theta_inc = 0.

5

swspy, Release 1.0.4

6 Chapter 2. Coordinate System

CHAPTER

THREE

TUTORIALS

Included here are a number of tutorials showing examples of how to use swspy.

3.1 Example of single source-receiver measurement for ScS arrival,
manually specifying input paramters

This example shows how the code can be applied to undertake shear-wave splitting analysis for an ScS arrival at one
receiver.

Note: Here, event information such as S arrival time, ray back-azimuth and ray inclination are manually specified (see
other examples for automatic passing of these parameters based on swspy or nonlinloc formats).

The data is from:

J Asplet, J Wookey, M Kendall. (2020) “A potential post-perovskite province in D beneath the Eastern Pacific: evidence
from new analysis of discrepant SKS–SKKS shear-wave splitting”. GJI.

[1]: %load_ext autoreload
%autoreload 2

[2]: import swspy
import obspy
from obspy import UTCDateTime
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
import glob
import os, sys
import pandas as pd

3.1.1 Perform shear-wave splitting on event:

[3]: # And get data for specific station:
station_to_analyse = "RDM"
event_uid = "RDM_2003174_121231_ScS"
S_wave_arrival_time = obspy.UTCDateTime("2003-06-23T12:31:20.000000Z")

Manually specify key parameters:
stations_in = [station_to_analyse]

(continues on next page)

7

swspy, Release 1.0.4

(continued from previous page)

S_phase_arrival_times = [S_wave_arrival_time]
back_azis_all_stations = [311.86] # Back-azimuth from North
receiver_inc_angles_all_stations = [0.0] # Inclination angle of ray at station from␣
→˓vertical up (assume arriving with vertical incidence)
win_starttime = S_wave_arrival_time - 5
win_endtime = S_wave_arrival_time + 25

Load data:
mseed_path = os.path.join("data","splittingsample","data", event_uid+".*")
downsample_factor = 1 # Factor to downsample data by (for faster slitting)
load_wfs_obj = swspy.io.load_waveforms(mseed_path, archive_vs_file="file", downsample_
→˓factor=downsample_factor)
load_wfs_obj.filter = True
load_wfs_obj.filter_freq_min_max = [0.01, 0.5]
st = load_wfs_obj.read_waveform_data()

Calculate splitting:
splitting_event = swspy.splitting.create_splitting_object(st, event_uid=event_uid,␣
→˓stations_in=stations_in, S_phase_arrival_times=S_phase_arrival_times, back_azis_all_
→˓stations=back_azis_all_stations, receiver_inc_angles_all_stations=receiver_inc_angles_
→˓all_stations)
splitting_event.overall_win_start_pre_fast_S_pick = 4.0
splitting_event.win_S_pick_tolerance = 1.0
splitting_event.overall_win_start_post_fast_S_pick = (win_endtime - win_starttime) - 10
splitting_event.rotate_step_deg = 1.0
splitting_event.max_t_shift_s = 5.0
splitting_event.n_win = 10
splitting_event.perform_sws_analysis(coord_system="ZNE", sws_method="EV")

And plot splitting result:
splitting_event.plot(outdir=os.path.join("outputs", "plots"))

And save result to file:
splitting_event.save_result(outdir=os.path.join("outputs", "data"))

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

Saved sws result to: outputs/data/RDM_2003174_121231_ScS_sws_result.csv

[]:

8 Chapter 3. Tutorials

swspy, Release 1.0.4

3.2 Single earthquake example (for multiple receiver observations)

Example of shear-wave splitting applied to an icequake from Rutford Ice Stream, Antarctica.

The event is an icequake from Hudson et al. (2020).

Hudson, T.S., Brisbourne, A.M., Walter, F., Graff, D., & White, R. S. (2020). Icequake source mechanisms for studying
glacial sliding. Journal of Geophysical Research: Earth Surface. https://doi.org/10.1029/2020JF005627

[1]: %load_ext autoreload
%autoreload 2

[2]: import swspy
import obspy
from obspy import UTCDateTime
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
%matplotlib notebook

3.2.1 1. Load data for event:

Data can be from an archive of continuous seismic data, or from a mseed file containing only data for the event.

[3]: # Load data:
archive_vs_file = "file"
mseed_file_path = "data/20090121042009180_ice_flow_dir_corrected.m"
nonlinloc_event_path = "data/loc.Tom__RunNLLoc000.20090121.042009.grid0.loc.hyp"
starttime = UTCDateTime("20090121T042009.18523") - 0.5
endtime = UTCDateTime("20090121T042009.18523") + 2.5
load_wfs_obj = swspy.io.load_waveforms(mseed_file_path, starttime=starttime,␣
→˓endtime=endtime, archive_vs_file=archive_vs_file)
load_wfs_obj.filter = True
load_wfs_obj.filter_freq_min_max = [1.0, 80.0]
st = load_wfs_obj.read_waveform_data()

3.2.2 2. Calculate splitting:

Note: Here, event information such as S arrival time, ray back-azimuth and ray inclination are taken automatically from
a nonlinloc event file (see other examples for manual passing of these parameters).

[4]: # Calculate splitting:
splitting_event = swspy.splitting.create_splitting_object(st, nonlinloc_event_
→˓path=nonlinloc_event_path) #(st, nonlinloc_event_path) #(st.select(station="ST01"),␣
→˓nonlinloc_event_path)
splitting_event.overall_win_start_pre_fast_S_pick = 0.3
splitting_event.win_S_pick_tolerance = 0.1
splitting_event.overall_win_start_post_fast_S_pick = 0.2
splitting_event.rotate_step_deg = 2.0
splitting_event.max_t_shift_s = 0.1

(continues on next page)

3.2. Single earthquake example (for multiple receiver observations) 9

https://doi.org/10.1029/2020JF005627

swspy, Release 1.0.4

(continued from previous page)

splitting_event.n_win = 10
splitting_event.perform_sws_analysis(coord_system="ZNE", sws_method="EV")

No S phase pick for station: ST08 therefore skipping this station.
No S phase pick for station: ST06 therefore skipping this station.
No S phase pick for station: ST10 therefore skipping this station.
No S phase pick for station: ST09 therefore skipping this station.
No S phase pick for station: ST07 therefore skipping this station.

[4]: station phi_from_Q phi_from_N phi_from_U phi_err dt dt_err \
0 ST05 26.0 74.57 90.0 11.0 0.004 0.003
0 ST04 -48.0 54.07 90.0 3.0 0.044 0.001
0 ST02 38.0 67.53 90.0 3.0 0.042 0.018
0 ST03 -82.0 -87.53 90.0 6.0 0.020 0.001
0 ST01 -60.0 48.74 90.0 5.0 0.048 0.002

src_pol_from_N src_pol_from_U src_pol_from_N_err src_pol_from_U_err \
0 154.197600 89.946359 17.214782 10.537896
0 165.368197 90.444536 6.430684 3.923207
0 163.575889 90.504097 6.436617 2.740569
0 26.199288 95.881281 12.880766 23.807806
0 168.369942 88.213619 9.483751 6.103969

Q_w lambda2/lambda1 ratio ray_back_azi ray_inc
0 NaN 0.055499 48.57 141.8
0 NaN 0.033150 282.07 163.9
0 NaN 0.034949 29.53 160.6
0 NaN 0.068566 354.47 144.4
0 NaN 0.052323 108.74 156.5

3.2.3 3. Plot result:

[5]: splitting_event.plot(outdir='plots')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

10 Chapter 3. Tutorials

swspy, Release 1.0.4

No S phase pick for station: ST08 therefore skipping this station.
Skipping waveform correction for station: ST08
No S phase pick for station: ST06 therefore skipping this station.
Skipping waveform correction for station: ST06
No S phase pick for station: ST10 therefore skipping this station.
Skipping waveform correction for station: ST10

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

No S phase pick for station: ST09 therefore skipping this station.
Skipping waveform correction for station: ST09
No S phase pick for station: ST07 therefore skipping this station.
Skipping waveform correction for station: ST07

3.2.4 4. Save result:

[6]: # And save result to file:
splitting_event.save_result()

Saved sws result to: /Users/eart0504/Documents/python/github_repositories/swspy/docs/
→˓source/tutorials/single_event_example/20090121042009_sws_result.csv

[]:

3.2. Single earthquake example (for multiple receiver observations) 11

swspy, Release 1.0.4

3.3 Example of how to run automated multi-event manager

This example shows how the code can be applied to undertake shear-wave splitting analysis for many events, with the
data from the SKS example.

Here, the S-picks are defined as 10 s into the sac data for each event.

Data is from:

J Asplet, J Wookey, M Kendall. (2020) “A potential post-perovskite province in D beneath the Eastern Pacific: evidence
from new analysis of discrepant SKS–SKKS shear-wave splitting”. GJI.

[1]: %load_ext autoreload
%autoreload 2

[2]: # Import modules:
import swspy
import obspy
from obspy import UTCDateTime
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
import glob
import os, sys
import pandas as pd

3.3.1 Specify parameters for processing:

First one specifies all the relevent parameters for the splitting analysis. This changes various parameters from their
default values to something more appropriate for a particular dataset.

Note: For a detailed description of each parameter/attribute, do help(proc_many_events()) or read the documentation.

[3]: # Specify data management parameters:
datadir = "data"
outdir = "outputs"

[4]: # Setup automation object and set key splitting data processing parameters:
sws_proc_obj = swspy.automate.proc_many_events()
sws_proc_obj.filter = True
sws_proc_obj.filter_freq_min_max = [0.01, 0.5]
sws_proc_obj.overall_win_start_pre_fast_S_pick = 4.0
sws_proc_obj.win_S_pick_tolerance = 1.0
sws_proc_obj.overall_win_start_post_fast_S_pick = 30.0
sws_proc_obj.rotate_step_deg = 1.0
sws_proc_obj.max_t_shift_s = 5.0
sws_proc_obj.n_win = 10
sws_proc_obj.downsample_factor = 1 #4
sws_proc_obj.coord_system = "ZNE"
sws_proc_obj.sws_method = "EV"
sws_proc_obj.output_plots = False

12 Chapter 3. Tutorials

swspy, Release 1.0.4

3.3.2 Run the processing for multiple events:

After specifying the various parameters, one can run the analysis over multiple events.

[5]: # And run events through automated processing:
S_pick_time_after_start_s = 10.0 # Time of S pick after start of SAC trace
sws_proc_obj.run_events_sws_fmt(datadir, outdir, S_pick_time_after_start_s=S_pick_time_
→˓after_start_s)

Processing for event UID: 116A_2006360_122621_SKKS (1/11)
Saved sws result to: outputs/data/20061226125151_sws_result.csv
Saved sws wfs to: outputs/data/20061226125151_wfs_*.mseed
Processing for event UID: COR_2008321_170232_SKS (2/11)
Saved sws result to: outputs/data/20081116172713_sws_result.csv
Saved sws wfs to: outputs/data/20081116172713_wfs_*.mseed
Processing for event UID: DAN_2003174_121231_ScS (3/11)
Saved sws result to: outputs/data/20030623123100_sws_result.csv
Saved sws wfs to: outputs/data/20030623123100_wfs_*.mseed
Processing for event UID: FACU_2009297_144044_SKS (4/11)
Saved sws result to: outputs/data/20091024150503_sws_result.csv
Saved sws wfs to: outputs/data/20091024150503_wfs_*.mseed
Processing for event UID: HUMO_2008321_170232_SKS (5/11)
Saved sws result to: outputs/data/20081116172718_sws_result.csv
Saved sws wfs to: outputs/data/20081116172718_wfs_*.mseed
Processing for event UID: IRON_2009297_144044_SKS (6/11)
Saved sws result to: outputs/data/20091024150513_sws_result.csv
Saved sws wfs to: outputs/data/20091024150513_wfs_*.mseed
Processing for event UID: K20A_2009003_223342_SKKS (7/11)
Saved sws result to: outputs/data/20090103225943_sws_result.csv
Saved sws wfs to: outputs/data/20090103225943_wfs_*.mseed
Processing for event UID: L07A_2007256_094844_SKS (8/11)
Saved sws result to: outputs/data/20070913101323_sws_result.csv
Saved sws wfs to: outputs/data/20070913101323_wfs_*.mseed
Processing for event UID: L24A_2009003_194355_SKKS (9/11)
Saved sws result to: outputs/data/20090103201022_sws_result.csv
Saved sws wfs to: outputs/data/20090103201022_wfs_*.mseed
Processing for event UID: NE81_2006360_122621_SKKS (10/11)
Saved sws result to: outputs/data/20061226125216_sws_result.csv
Saved sws wfs to: outputs/data/20061226125216_wfs_*.mseed
Processing for event UID: RDM_2003174_121231_ScS (11/11)
Saved sws result to: outputs/data/20030623123110_sws_result.csv
Saved sws wfs to: outputs/data/20030623123110_wfs_*.mseed
Finished processing shear-wave splitting for data in: data
Data saved to: outputs

[]:

3.3. Example of how to run automated multi-event manager 13

swspy, Release 1.0.4

3.4 Example using SAC data

This example shows how the code can be applied to undertake shear-wave splitting analysis using SAC data format.

SAC data can be passed directly into SWSPy in isolation, so long as the SAC headers are populated with the neccessary
information to perform the splitting measurement.

The relevent SAC headers that have to be populated are:

1. a - The arrival time of the phase to use (in secs after trace start time).

2. baz - The back-azimuth from receiver to event (in deg from N).

(Note: It assumes that rays arrive vertically, so doesn’t currently read inclination for SAC data)

The data in this examples is from:

J Asplet, J Wookey, M Kendall. (2020) “A potential post-perovskite province in D beneath the Eastern Pacific: evidence
from new analysis of discrepant SKS–SKKS shear-wave splitting”. GJI.

[1]: %load_ext autoreload
%autoreload 2

[2]: import swspy
import obspy
import os
from obspy import UTCDateTime
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt

3.4.1 Specify parameters for processing:

First one specifies all the relevent parameters for the splitting analysis. This changes various parameters from their
default values to something more appropriate for a particular dataset.

Note: For a detailed description of each parameter/attribute, do help(proc_many_events()) or read the documentation.

[3]: # Specify where data is:
sac_dir = "data"
outdir = "outputs"

[4]: # Setup automation object and set key splitting data processing parameters:
sws_proc_obj = swspy.automate.proc_many_events()
sws_proc_obj.filter = True
sws_proc_obj.filter_freq_min_max = [0.01, 0.5]
sws_proc_obj.overall_win_start_pre_fast_S_pick = 4.0
sws_proc_obj.win_S_pick_tolerance = 1.0
sws_proc_obj.overall_win_start_post_fast_S_pick = 20.0
sws_proc_obj.rotate_step_deg = 1.0
sws_proc_obj.max_t_shift_s = 4.0
sws_proc_obj.n_win = 10
sws_proc_obj.downsample_factor = 1 #4

(continues on next page)

14 Chapter 3. Tutorials

swspy, Release 1.0.4

(continued from previous page)

sws_proc_obj.coord_system = "ZNE"
sws_proc_obj.sws_method = "EV"
sws_proc_obj.output_plots = True

3.4.2 Run the processing for event(s) in sac directory:

After specifying the various parameters, one can run the analysis over multiple events.

[6]: sws_proc_obj.run_events_sac(sac_dir, outdir)

Processing for event: 0/1
Successfully retreived sac info.
Saved sws result to: outputs/data/NEE_2005036_122318_SKKS_sws_result.csv
Saved sws wfs to: outputs/data/NEE_2005036_122318_SKKS_wfs_*.mseed

/Users/eart0504/Documents/python/github_repositories/swspy/swspy/splitting/split.py:1907:
→˓ UserWarning: constrained_layout not applied. At least one axes collapsed to zero␣
→˓width or height.
plt.savefig(os.path.join(outdir, ''.join((self.event_uid, "_", station, ".png"))),␣

→˓dpi=300)

Finished processing shear-wave splitting for data in: data
Data saved to: outputs

[]:

3.4. Example using SAC data 15

swspy, Release 1.0.4

16 Chapter 3. Tutorials

CHAPTER

FOUR

TIPS FOR HPC USERS

Since SWSPy is parallelised, it may be beneficial to process data on High Performance Computing (HPC) infrastructure
for large datasets. Here is a little information on the arcitecture of SWSPy and a brief example on how to structure a
HPC job.

SWSPy is parallelised in an embarissingly parallel fashion for performing the phi-dt grid search. Each process is
therefore independent during the grid search. However, the processes come together at the end of each process, and so
the code should be treated as a shared memory model rather than a distributed memory model. Crucially, this means
that for any job, one should only submit to a maximum of one node. SWSPy does not support parallelisation across
mulitple nodes for one job.

A simple example of a possible submission script is shown below. This script is written for a SLURM submission
management system with the Anaconda package manager installed.

Setup SBATCH params (example only):
SBATCH --nodes=1 # NOTE: swspy will only run on a single node
SBATCH --ntasks-per-node=1
SBATCH --cpus-per-task=48 # NOTE: Make sure number of NUMBA threads specified in swspy!
SBATCH --mem=64000
SBATCH --time=12:00:00
SBATCH --job-name=swspy_run

Load python environment:
module load Anaconda3
source activate $DATA/swspy_env #Path to anaconda environment with swspy and all␣
→˓dependencies installed

Run SWSPy:
NOTE: Very important that the number of processors specified above (--cpus-per-task␣
→˓parameter)
python swspy_run_script.py # Python script detailing specific commands for running swspy␣
→˓(see examples in tutorials).

17

swspy, Release 1.0.4

18 Chapter 4. Tips for HPC users

CHAPTER

FIVE

SWSPY

5.1 swspy package

5.1.1 Subpackages

swspy.automate package

Submodules

swspy.automate.automation_manager module

class swspy.automate.automation_manager.proc_many_events

Bases: object

Class to process many events to calculate shear-wave splitting.

Parameters
None. –

filter

If True, then filters the data by <filter_freq_min_max>.

Type
bool (default = False)

filter_freq_min_max

Filter parameters for filtering the data.

Type
list of two floats (default = [1.0, 100.0])

overall_win_start_pre_fast_S_pick

Overall window start time in seconds before S pick.

Type
float (default = 0.1 s)

overall_win_start_post_fast_S_pick
[float (default = 0.2 s)] Overall window start time in seconds after S pick.

win_S_pick_tolerance
[float (default = 0.1 s)] Time before and after S pick to not allow windows to start within (in sec-
onds). For example, start windows start at: S arrival time - (<overall_win_start_pre_fast_S_pick> +

19

swspy, Release 1.0.4

<win_S_pick_tolerance>) And end times windows start at: S arrival time + <win_S_pick_tolerance> +
<overall_win_start_post_fast_S_pick>

rotate_step_deg
[float (default = 2.0 degrees)] Rotation step size of phi in degrees for the grid search in phi-delay-time space.

max_t_shift_s
[float (default = 0.1 s)] The maximum time shift the data by in seconds.

n_win
[int (default = 10)] The number of window start and end times to pick. Currently implemented as con-
stant window step sizes within the specified range, as defined by <overall_win_start_pre_fast_S_pick> amd
<win_S_pick_tolerance>. Therefore, will calculate splitting for n_win^2 windows in total.

downsample_factor
[int (default = 1)] Factor by which to downsample the data, to speed up processing. If <downsample_factor>
= 1, doens’t apply downsampling.

upsample_factor
[int (default = 1)] Factor by which to upsample the data, to smooth waveforms for enhanced timeshift pro-
cessing. Currently uses weighted average slopes interpolation method. If <upsample_factor> = 1, doens’t
apply upsampling.

coord_system
[str] Coordinate system to perform analysis in. Options are: LQT, ZNE. Will convert splitting angles back
into coordinates relative to ZNE whatever system it performs the splitting within. Default = ZNE.

sws_method
[str] Method with which to calculate sws parameters. Options are: EV, EV_and_XC. EV - Eigenvalue
method (as in Silver and Chan (1991), Teanby (2004), Walsh et al. (2013)). EV_and_XC - Same as EV,
except also performs cross-correlation for automation approach, as in Wustefeld et al. (2010). Default is
EV_and_XC.

output_wfs
[bool] If True, will save uncorrected and corrected waveforms to: <out-
dir>/<data>/<event_uid>_wfs_uncorr.png and <outdir>/<data>/<event_uid>_wfs_corr.png Default is
True.

output_plots
[bool] If True, will save output plots to: <outdir>/<plots>/<event_uid>_<station>.png Default is False.

suppress_direct_plotting
[bool] If True, suppresses direct plotting so plots are only saved to file (and will only save plots to file if
<output_plots=True>). Default = False

run_events_from_nlloc()

run_events_sws_fmt()

run_events_from_nlloc(mseed_archive_dir, nlloc_dir, outdir, archive_vs_event_mseed='archive',
event_uids_nlloc_fname_pairs_df=None, event_prepad=1.0,
event_postpad=30.0, nproc=1)

Function to run many events through shear-wave splitting analysis using nonlinloc and mseed data (in
archive format: <mseed_archive_dir>/<year>/ <julday>/. . .).

Parameters

• mseed_archive_dir (str) – Default: Path to mseed archive
overall directory. Subdirectory paths should be in format:
<mseed_archive_dir>/<year>/<julday>/yearjulday_station_channel.m. Alternative:

20 Chapter 5. swspy

swspy, Release 1.0.4

However, user can optionally specify to read cut mseed files for each event, if
archive_vs_event_mseed = “event” (rather than archive_vs_event_mseed = “archive”). In
this alternative case, <mseed_archive_dir> should be a directory containing a mseed file
for each event. A list of event uids and corresponding nlloc hyp filenames then also needs
to be specified, passed via the parameter <event_uids_nlloc_fname_pairs_df>.

• nlloc_dir (str) – Path to nlloc .grid0.loc.hyp output files corresponding to events that
want to process.

• outdir (str) – Path to output directory to save data to. Saves results to: csv event sum-
mary file: <outdir>/<data>/event_uid.csv And if <output_plots> is specified, then will out-
put plots to: png event station file: <outdir>/<data>/<event_uid>_<station>.png

• archive_vs_event_mseed (str) – Two options: 1. “archive” - Specifies that
<mseed_archive_dir> points to an archive directory. 2. “event” - Specifies that
<mseed_archive_dir> points to a directory containing

mseed data named by each event uid individually.

Note: If “event” is specified, then user must also specify
<event_uids_nlloc_fname_pairs_df>. Default is “archive”.

• event_uids_nlloc_fname_pairs_df (pandas DataFrame) – Pandas DataFrame con-
taining two columns: 1. event_uid. This corresponds to the event mseed files labelled and
contained in

<mseed_archive_dir>.

2. nlloc_fname. This corresponds to the path to the nlloc file corresponding to the
event with event_uid.

Default is None.

• event_prepad (float) –

• event_postpad (float) –

• nproc (int) –

Return type
Data output to files in outdir, as specified above.

run_events_sac(sac_dir, outdir, nproc=1)
Function to run many events through shear-wave splitting analysis using sac data.

Parameters

• sac_dir (str) – Path to sac input data directory. sac files for multiple events can
be stored together in this directory. There must be three files for each event, corre-
sponding to Z,N,E components. Each must have a corresponding event unique ID,
e.g.: event1.BHZ, event1.BHN, event1.BHE, event2.BHZ, event2.BHN, event2.BHE,
. . .

• outdir (str) – Path to output directory to save data to. Saves results
to: csv event summary file: <outdir>/<data>/event_uid.csv And if <out-
put_plots> is specified, then will output plots to: png event station file: <out-
dir>/<data>/<event_uid>_<station>.png

• event_prepad (float) –

• event_postpad (float) –

• nproc (int) –

5.1. swspy package 21

swspy, Release 1.0.4

Return type
Data output to files in outdir, as specified above.

run_events_sws_fmt(datadir, outdir, S_pick_time_after_start_s=10.0)
Function to run many events through shear-wave splitting analysis using sws format and sac data.

————————— sws format notes: —————————

Data directories containing sac data must be formatted as follows: <datadir>/event_uid/.?H

Sac data for each event must be trimmed with <S_pick_time_after_start_s> seconds
padding before the S pick and sufficient padding after. Additionally, sac data must have
back azimuth information (and inclination info. if not using ZNE coordinate system).
————————————————————————-

Parameters

• datadir (str) – The overall directory path containing all events with event unique
IDs as each directory, with each directory containing SAC files for each component of
each station. I.e. data follows format: <datadir>/event_uid/.?H

• outdir (str) – Path to output directory to save data to. Saves results
to: csv event summary file: <outdir>/<data>/event_uid.csv And if <out-
put_plots> is specified, then will output plots to: png event station file: <out-
dir>/<data>/<event_uid>_<station>.png

• S_pick_time_after_start_s (float) – Time, in seconds, of S pick after start of
SAC trace. Default is 10.0 s.

Module contents

Submodule for undertaking autmoated splitting analysis.

swspy.io package

Submodules

swspy.io.load module

class swspy.io.load.load_waveforms(path, starttime=None, endtime=None, archive_vs_file='archive',
downsample_factor=1, upsample_factor=1, sac=False)

Bases: object

A class to load waveforms from file or an archive.

Notes: - Will currently only load archived data from the format year/jul_day/station - Does not currently remove
instrument response

Parameters

• path (str) – The path to the overall data archive or file to load waveforms from.

• archive_vs_file (str (default = "archive")) – Describes what the parameter
<path> is associated with. If archive, then <path> is to an archive. If file, then <path> is
the path to a obspy readable file (e.g. mseed). Default is archive.

22 Chapter 5. swspy

swspy, Release 1.0.4

• starttime (obspy UTCDateTime object) – The starttime to cut the data by. Any fil-
ters are applied before cutting. If not supplied then will load all data from the supplied
file path (archive_vs_file must = file for this to be valid).

• endtime (obspy UTCDateTime object) – The endtime to cut the data by. Any filters
are applied before cutting. If not supplied then will load all data from the supplied file
path (archive_vs_file must = file for this to be valid).

filter

If True, then filters the data by <filter_freq_min_max>.

Type
bool (default = False)

filter_freq_min_max

Filter parameters for filtering the data.

Type
list of two floats (default = [2.0, 20.0])

zero_phase

If True, applies zero phase filter (if <filter> = True).

Type
bool (default = True)

remove_response

If True, removes instrument response using the response file specified by <response_file>. (Note: Not
currently implemented!)

Type
bool (default = False)

response_file_path

Path to response file used to remove instrument response.

Type
str (default = None)

downsample_factor

Factor by which to downsample the data, to speed up processing. If <downsample_factor> = 1, obviously
doens’t apply downsampling.

Type
int (default = 1)

upsample_factor

Factor by which to upsample the data, to smooth waveforms for enhanced timeshift processing. Currently
uses weighted average slopes interpolation method. If <upsample_factor> = 1, doens’t apply upsampling.

Type
int (default = 1)

sac

If passing sac data, will read in sac headers to output directly for doing the splitting analysis. Note that
currently doesn’t read a ray inclination angle, so sets to come in vertically. Explicitly, reads the following
information from the sac headers: The arrival time of the phase to use (in secs after trace start time).
Default header is <a>, but user can specify a different value (e.g. <t0>) by using the class attribute
<sac_s_pick_hdr>. baz - The back-azimuth from receiver to event (in deg from N). (also reads station
from the stream headers). If sac = True, then read_waveform_data() will output the dictionary sac_info as

5.1. swspy package 23

swspy, Release 1.0.4

part of the class, with the following keys: event_id - id for the event, set from the sac input fname. stations
- Receiver ids. s_arrival_times - S-wave arrival times in UTCDateTime fmt. bazs - Back-azimuths. incs -
Ray inclination angles (all = 0 degrees from vertical).

Type
bool (default = False)

sac_s_pick_hdr

The sac header to use for the S pick arrival time. Value is float with units of seconds from start of trace.

Type
str (default = a)

read_waveform_data(stations=[], channels='*')
Read in the waveform data for the specified time.

read_waveform_data(stations=None, channels='*', event_uid='*')
Function to read waveform data. Filters if specified.

Parameters

• stations (list of strs (default = None)) – List of stations to import. If
None then imports all available stations (default).

• channels (str (default = "*")) – List of channels to import. Default is to im-
port all channels.

• Returns –

• st (obspy stream) – Obspy stream object containing all the data requested.

swspy.io.read_nonlinloc module

class swspy.io.read_nonlinloc.read_hyp_file(hyp_fname)
Bases: object

Class to import all useful information from a NonLinLoc hyp file.

read()

Function to read the lines of the file and append to the class structure.

Module contents

Submodule for dealing with input and output management

swspy.splitting package

Submodules

swspy.splitting.forward_model module

exception swspy.splitting.forward_model.CustomError

Bases: Exception

24 Chapter 5. swspy

swspy, Release 1.0.4

swspy.splitting.forward_model.add_splitting(ZNE_st, phi_from_N, dt, back_azi,
event_inclin_angle_at_station, snr=None)

Function to add splitting to waveforms in ZNE notation.

Parameters

phi_from_N
[float] Angle of fast direction, in degrees from N.

dt
[float] Delay time between fast and slow S-waves, in seconds.

back_azi
[float] Back-azimuth from source to receiver, in degrees from N.

event_inclin_angle_at_station
[float] Inclination of ray at station, in degrees from vertical up.

phi_from_up
[float] Angle of fast direction, in degrees from vertical up. Optional. Default = 0 degrees.

snr
[float] Signal-to-noise-ratio of output source-time function. Optional. If not None, then will add white
gaussian noise to data.

swspy.splitting.forward_model.create_src_time_func(dur, fs, src_pol_from_N=0, src_pol_from_up=0,
src_freq=10.0, wavelet='ricker', t_src=1.0)

Function to create synthetic source time function.

Parameters

fs
[float] Sampling rate, in Hz.

src_pol_from_N
[float] Source polarisation from North, in degrees. Optional. Default = 0 degrees.

src_pol_from_up
[float] Source polarisation from vertical up, in degrees. Optional. Default = 0 degrees.

src_freq
[float] Dominant source frequency, in Hz. Optional. Default is 10 Hz.

wavelet
[str] Type of wavelet to use for the source-time function. Optional. Default is ricker. Other options not
currently implemented.

t_src
[float] Time, in seconds, from the beginning of the trace when the source-time function peaks. Optional.
Default = 1 s.

5.1. swspy package 25

swspy, Release 1.0.4

swspy.splitting.split module

exception swspy.splitting.split.CustomError

Bases: Exception

swspy.splitting.split.calc_dof(y)
Finds the number of degrees of freedom using a noise trace, y. Uses definition as in Walsh2013. Note: Doesn’t
apply any form of smoothing filter (f(t,h)).

class swspy.splitting.split.create_splitting_object(st, nonlinloc_event_path=None,
event_uid=None, stations_in=[],
S_phase_arrival_times=[],
back_azis_all_stations=[],
receiver_inc_angles_all_stations=[])

Bases: object

Class to create splitting object to perform shear wave splitting on.

Parameters

• sts (obspy Stream object) – Obspy stream containing all the waveform data for all
the stations and channels to perform the splitting on.

• nonlinloc_event_path (str) – Path to NonLinLoc .grid0.loc.hyp file for the event.

overall_win_start_pre_fast_S_pick

Overall window start time in seconds before S pick.

Type
float (default = 0.1 s)

overall_win_start_post_fast_S_pick
[float (default = 0.2 s)] Overall window start time in seconds after S pick.

win_S_pick_tolerance
[float (default = 0.1 s)] Time before and after S pick to not allow windows to start within (in sec-
onds). For example, start windows start at: S arrival time - (<overall_win_start_pre_fast_S_pick> +
<win_S_pick_tolerance>) And end times windows start at: S arrival time + <win_S_pick_tolerance> +
<overall_win_start_post_fast_S_pick>

rotate_step_deg
[float (default = 2.0 degrees)] Rotation step size of phi in degrees for the grid search in phi-delay-time
space.

max_t_shift_s
[float (default = 0.1 s)] The maximum time shift the data by in seconds.

n_win
[int (default = 10)] The number of window start and end times to pick. Currently implemented as constant
window step sizes within the specified range, as defined by <overall_win_start_pre_fast_S_pick> amd
<win_S_pick_tolerance>. Therefore, will calculate splitting for n_win^2 windows in total.

perform_sws_analysis : Function to perform shear-wave splitting analysis.

plot : Function to plot the shear-wave splitting results.

save_result : Function to save sws results to file.

save_wfs : Function to save uncorrected and corrected waveforms to file.

26 Chapter 5. swspy

swspy, Release 1.0.4

perform_sws_analysis(coord_system='ZNE', sws_method='EV', return_clusters_data=True,
num_threads=2)

Function to perform splitting analysis. Works in LQT coordinate system as then performs shear-wave-
splitting in 3D.

Parameters

• coord_system (str) – Coordinate system to perform analysis in. Options are: LQT,
ZNE. Will convert splitting angles back into coordinates relative to ZNE whatever
system it performs the splitting within. Default = ZNE.

• sws_method (str) – Method with which to calculate sws parameters. Options are:
EV, EV_and_XC. EV - Eigenvalue method (as in Silver and Chan (1991), Teanby
(2004), Walsh et al. (2013)). EV_and_XC - Same as EV, except also performs cross-
correlation for automation approach, as in Wustefeld et al. (2010). Default is EV.

• return_clusters_data (bool) – If True, returns clustering data information. This
is primarily used for plotting. Default is False.

• num_threads (int) – Number of threads to use for parallel computing. Default is to
use all available threads on the system.

Returns
self.sws_result_df – A pandas DataFrame containing the key splitting results.

Return type
pandas DataFrame

perform_sws_analysis_multi_layer(coord_system='ZNE', multi_layer_method='explicit',
num_threads=2)

Function to perform splitting analysis for a multi-layered medium. Currently
only a 2-layer medium is supported. Works in LQT coordinate system, therefore

supporting shear-wave-splitting in 3D. Currently doesn’t support any method other than <sws_method> =
EV and doesn’t support returning clustered data. Method assumes that apparent delay-time is longer than
fast S-wave arrival duration.

Parameters

• coord_system (str) – Coordinate system to perform analysis in. Options are: LQT,
ZNE. Will convert splitting angles back into coordinates relative to ZNE whatever
system it performs the splitting within. Default = ZNE.

• multi_layer_method (str) – Multi-layer method algorithm to apply. Two options
are: 1. explicit - Applies layers individually, one at a time. Efficient and far fewer
free parameters, as computation scales as (n_phi * n_dt) * n-layers. 2. direct - Applies
layers directly together in the inversion. Computationally expensive relative to explicit
method, with many free parameters, as computation scales as (n_phi * n_dt) ^ n-layers.

• num_threads (int) – Number of threads to use for parallel computing. Default is to
use all available threads on the system.

Returns

• self.sws_result_df (pandas DataFrame) – A pandas DataFrame containing the key
splitting results for an apparent splitting measurement (i.e. assuming only one layer).

• self.sws_multi_layer_result_df pandas DataFrame – A pandas DataFrame containing
the key splitting results for hte multi-layer result.

5.1. swspy package 27

swspy, Release 1.0.4

plot(outdir=None, suppress_direct_plotting=False)
Function to perform plotting. . .

save_result(outdir='/home/docs/checkouts/readthedocs.org/user_builds/swspy/checkouts/latest/docs/source')
Function to save output. Output is a csv file with all the splitting data for the event, for all stations. Saves
result as <event_uid>, to <outdir>.

save_wfs(outdir='/home/docs/checkouts/readthedocs.org/user_builds/swspy/checkouts/latest/docs/source')
Function to save waveforms outputs. Outputs are unccorrected and corrected waveforms for all events.
Saves result as <event_uid>.mseed, to <outdir>.

swspy.splitting.split.direct_multi_layer_inv_fun(params, theta_app, alpha_app)
Function combining eqns 1-3 from Ozalaybey and Savage (1994). Note: All angles in radians.

swspy.splitting.split.find_nearest(array, value)

swspy.splitting.split.find_nearest_2D(array, value)

swspy.splitting.split.ftest(data, dof, alpha=0.05, k=2, min_max='min')
Finds the confidence bounds value associated with data. Note that this version uses the minumum of the data by
default. :param data: Data to process. :type data: np array :param dof: Number of degrees of freedom. :type
dof: int :param alpha: Confidence level (e.g. if alpha = 0.05, then 95pc confidence level found). :type alpha:
float :param k: Number of parameters (e.g. phi, dt). :type k: int :param min_max: Whether performs ftest on
min or max of data. :type min_max: specific str

Returns
conf_bound – Value of the confidence bounds for the specified confidence level, alpha.

Return type
float

swspy.splitting.split.remove_splitting(st_ZNE_uncorr, phi, dt, back_azi, event_inclin_angle_at_station,
return_BPA=False, src_pol=0.0, return_FS=True)

Function to remove SWS from ZNE data for a single station. Note: Consistency in this function with sws mea-
surement. Uses T in x-direction and Q in y direction convention.

Parameters

• st_LQT_uncorr (obspy stream object) – Stream data for station corresponding to
splitting parameters.

• phi (float) – Splitting angle, for LQT coordinates.

• dt (float) – Fast-slow delay time (lag) for splitting.

• back_azi (float) – Back azimuth angle from reciever to event in degrees from North.

• event_inclin_angle_at_station (float) – Inclination angle of arrival at receiver,
in degrees from vertical down.

• return_BPA (bool) – If True, will return obspy stream with Z,N,E and B,P,A channels
(as in Walsh (2013)). Optional. Default = False.

• src_pol (float) – If <return_BPA> = True, then uses src_pol to calculate the polarisi-
ation and null (P,A) vectors. Units are degrees clockwise from North.

• return_FS (bool) – If True, will return obspy stream with F (fast) and S (slow) channels
also included. Optional. Default = True.

Returns
st_ZNE_corr – Corrected data, in ZNE coordinates (unless <return_BPA> = True, then will
also output BPA channels too).

28 Chapter 5. swspy

swspy, Release 1.0.4

Return type
obspy stream object

Module contents

Submodule for undertaking splitting analysis.

5.1.2 Submodules

5.1.3 swspy.testing module

swspy.testing.assert_angle_allclose(actual, desired, **kwargs)
Raises an AssertionError if two objects are not equal accounting for angle

This wraps numpy.testing.assert_allclose but values such as 0.0, 360.0 and 180.0 are all treated as being the
same. Keyword arguments are passed on.

swspy.testing.clamp_angle(angle_in)
Assuming 180 degree periodicity, represent an angle between -90 and +90 degrees

angle is a numpy array.

swspy.testing.periodic_angular_difference(a_angle, b_angle)
Angular difference assuming 180 degree periodicity

a_angle and b_angle are numpy arrays of angle, retuns a numpy array of differences such that 0.0 and 360.0 and
180.0 are all the same.

5.1.4 Module contents

5.1. swspy package 29

swspy, Release 1.0.4

30 Chapter 5. swspy

CHAPTER

SIX

CONTRIBUTING

If you want to contribute to improving this package then you are most welcome. There are various ways to contribute:

1. If you find a bug/error you can raise an issue within the SWSPy github repository.

2. If you have implemented something new that would improve the package or fix an issue, then you can fork the
repository, checkout a new branch, make your changes, and submit a pull request for formal approval.

If possible, please try to raise code related issues through the github repository. However, if you are unclear on any
science aspects, then please feel free to email one of the core developers.

31

swspy, Release 1.0.4

32 Chapter 6. Contributing

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

33

swspy, Release 1.0.4

34 Chapter 7. Indices and tables

PYTHON MODULE INDEX

s
swspy, 29
swspy.automate, 22
swspy.automate.automation_manager, 19
swspy.io, 24
swspy.io.load, 22
swspy.io.read_nonlinloc, 24
swspy.splitting, 29
swspy.splitting.forward_model, 24
swspy.splitting.split, 26
swspy.testing, 29

35

swspy, Release 1.0.4

36 Python Module Index

INDEX

A
add_splitting() (in module

swspy.splitting.forward_model), 24
assert_angle_allclose() (in module swspy.testing),

29

C
calc_dof() (in module swspy.splitting.split), 26
clamp_angle() (in module swspy.testing), 29
create_splitting_object (class in

swspy.splitting.split), 26
create_src_time_func() (in module

swspy.splitting.forward_model), 25
CustomError, 24, 26

D
direct_multi_layer_inv_fun() (in module

swspy.splitting.split), 28
downsample_factor (swspy.io.load.load_waveforms at-

tribute), 23

F
filter (swspy.automate.automation_manager.proc_many_events

attribute), 19
filter (swspy.io.load.load_waveforms attribute), 23
filter_freq_min_max

(swspy.automate.automation_manager.proc_many_events
attribute), 19

filter_freq_min_max (swspy.io.load.load_waveforms
attribute), 23

find_nearest() (in module swspy.splitting.split), 28
find_nearest_2D() (in module swspy.splitting.split),

28
ftest() (in module swspy.splitting.split), 28

L
load_waveforms (class in swspy.io.load), 22

M
module

swspy, 29

swspy.automate, 22
swspy.automate.automation_manager, 19
swspy.io, 24
swspy.io.load, 22
swspy.io.read_nonlinloc, 24
swspy.splitting, 29
swspy.splitting.forward_model, 24
swspy.splitting.split, 26
swspy.testing, 29

O
overall_win_start_pre_fast_S_pick

(swspy.automate.automation_manager.proc_many_events
attribute), 19

overall_win_start_pre_fast_S_pick
(swspy.splitting.split.create_splitting_object
attribute), 26

P
perform_sws_analysis()

(swspy.splitting.split.create_splitting_object
method), 26

perform_sws_analysis_multi_layer()
(swspy.splitting.split.create_splitting_object
method), 27

periodic_angular_difference() (in module
swspy.testing), 29

plot() (swspy.splitting.split.create_splitting_object
method), 27

proc_many_events (class in
swspy.automate.automation_manager), 19

R
read() (swspy.io.read_nonlinloc.read_hyp_file method),

24
read_hyp_file (class in swspy.io.read_nonlinloc), 24
read_waveform_data()

(swspy.io.load.load_waveforms method),
24

remove_response (swspy.io.load.load_waveforms at-
tribute), 23

37

swspy, Release 1.0.4

remove_splitting() (in module swspy.splitting.split),
28

response_file_path (swspy.io.load.load_waveforms
attribute), 23

run_events_from_nlloc()
(swspy.automate.automation_manager.proc_many_events
method), 20

run_events_sac() (swspy.automate.automation_manager.proc_many_events
method), 21

run_events_sws_fmt()
(swspy.automate.automation_manager.proc_many_events
method), 20, 22

S
sac (swspy.io.load.load_waveforms attribute), 23
sac_s_pick_hdr (swspy.io.load.load_waveforms

attribute), 24
save_result() (swspy.splitting.split.create_splitting_object

method), 28
save_wfs() (swspy.splitting.split.create_splitting_object

method), 28
swspy

module, 29
swspy.automate

module, 22
swspy.automate.automation_manager

module, 19
swspy.io

module, 24
swspy.io.load

module, 22
swspy.io.read_nonlinloc

module, 24
swspy.splitting

module, 29
swspy.splitting.forward_model

module, 24
swspy.splitting.split

module, 26
swspy.testing

module, 29

U
upsample_factor (swspy.io.load.load_waveforms at-

tribute), 23

Z
zero_phase (swspy.io.load.load_waveforms attribute),

23

38 Index

	Installation
	Dependencies
	Installing
	Manual install from source
	pip install
	conda install

	Coordinate System
	Tutorials
	Example of single source-receiver measurement for ScS arrival, manually specifying input paramters
	Perform shear-wave splitting on event:

	Single earthquake example (for multiple receiver observations)
	1. Load data for event:
	2. Calculate splitting:
	3. Plot result:
	4. Save result:

	Example of how to run automated multi-event manager
	Specify parameters for processing:
	Run the processing for multiple events:

	Example using SAC data
	Specify parameters for processing:
	Run the processing for event(s) in sac directory:

	Tips for HPC users
	swspy
	swspy package
	Subpackages
	swspy.automate package
	Submodules
	swspy.automate.automation_manager module
	Module contents

	swspy.io package
	Submodules
	swspy.io.load module
	swspy.io.read_nonlinloc module
	Module contents

	swspy.splitting package
	Submodules
	swspy.splitting.forward_model module
	swspy.splitting.split module
	Module contents

	Submodules
	swspy.testing module
	Module contents

	Contributing
	Indices and tables
	Python Module Index
	Index

